18.100A PROBLEM SET 2 SOLUTIONS

Problem 1. Let $a_{n}=\frac{1}{\ln n}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)$ for $n \geq 2$. Show $\lim _{n \rightarrow \infty} a_{n}=1$.
Proof. Since $\frac{1}{x}$ is a decreasing function for $x>0$, we have

$$
\int_{1}^{n+1} \frac{1}{x} d x \leq 1+\frac{1}{2}+\cdots+\frac{1}{n} \leq 1+\int_{1}^{n} \frac{1}{x} d x
$$

In addition, direct computations yield

$$
\int_{1}^{n+1} \frac{1}{x} d x=\ln (n+1) \geq \ln n, \quad 1+\int_{1}^{n} \frac{1}{x} d x=1+\ln n
$$

Therefore,

$$
1=\frac{\ln n}{\ln n} \leq a_{n} \leq \frac{1+\ln n}{\ln n}=1+\frac{1}{\ln n}
$$

Given $\epsilon>0$, for $n>e^{1 / \epsilon}$ the following holds

$$
\left|a_{n}-1\right| \leq \frac{1}{\ln n} \leq \frac{1}{\ln e^{1 / \epsilon}}=\epsilon
$$

Therefore, 1 is the limit.

Comments : The limit multiplication theorem is not available for $b_{n}=$ $1+\cdots+\frac{1}{n}$ and $c_{n}=\frac{1}{\ln n}$, because b_{n} does not have a limit and tends to $+\infty$.

Problem 2. Let $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} a_{n}=L$. Prove that $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{L}$.
Proof. In the case $L=0$, given $\epsilon>0$ we have $\left|a_{n}\right| \leq \epsilon^{2}$ for $n \gg 1$. Therefore, $\left|\sqrt{a_{n}}\right| \leq \epsilon$ for $n \gg 1$, namely $\lim \sqrt{a_{n}}=0$.

We now assume $L>0$. Then,

$$
\begin{equation*}
\left|\sqrt{a_{n}}-\sqrt{L}\right| \leq\left|\frac{a_{n}-L}{\sqrt{a_{n}}+\sqrt{L}}\right| \leq \frac{\left|a_{n}-L\right|}{\sqrt{L}} \tag{1}
\end{equation*}
$$

Since $\lim a_{n}=L$, given $\epsilon>0$ we have $\left|a_{n}-L\right| \leq \sqrt{L} \epsilon$ for $n \gg 1$. Thus, $\left|\sqrt{a_{n}}-\sqrt{L}\right| \leq \epsilon$ for $n \gg 1$, namely $\lim \sqrt{a_{n}}=\sqrt{L}$.

Comments :

(1) In the case $L=0$, the last term in the inequality (1) is not defined.
(2) There is no theorem in the textbook which guarantees the convergence of $\sqrt{a_{n}}$. Hence, one can not assume that $\sqrt{a_{n}}$ converges to a certain limit M.

Problem 3. Problem 5-2 page 75. (It is enough to give one proof of (b), while the textbook asks to find two proofs.)
Proof for (a). Since $1-L>0$, we have $\frac{a_{n+1}}{a_{n}} \leq L+(1-L)=1$ for $n \gg 1$, namely $a_{n+1} \leq a_{n}$ for $n \gg 1$.
Comments : If $L=1$ then $L-1=0$ and thus the above argument fails. For example, $a_{n}=1-\frac{1}{n}$ is increasing. However, $\lim \frac{a_{n+1}}{a_{n}}=1$.
Proof for (b). Since $\frac{1-L}{2}>0$, we have $\frac{a_{n+1}}{a_{n}} \leq L+\frac{1-L}{2}=\frac{1+L}{2}$ for $n \geq N$ where N is a large natural number. Let M denote $\frac{1+L}{2}$. Then,

$$
a_{N+1} \leq M a_{N}
$$

We assume $a_{N+k} \leq M^{k} a_{N}$ for a natural number k. Then,

$$
a_{N+k+1}=\frac{a_{N+k+1}}{a_{N+k}} a_{N+k} \leq M \cdot M^{k} a_{N}=M^{k+1} a_{N}
$$

By the mathematical induction, we have $a_{n} \leq M^{n-N} a_{N}$ for $n \geq N$.
Theorem 3.4 shows $\lim M^{n}=0$. Therefore, Theorem 5.1.1 implies $\lim M^{n-N} a_{N}=$ 0 . Since $0<a_{n}$, the squeeze theorem yields $\lim a_{n}=0$.

Problem 4. Problem 5-7 page 75. (Hint: consider the two cases (1) $a_{0} \geq 2$, and (2) $0<a_{0}<2$.)
Proof for (a). Suppose $a_{0} \geq 2$. Then, $a_{1}=\sqrt{2 a_{0}} \geq 2$. Next, we assume $a_{k} \geq 2$ for some k. Then, $a_{k+1}=\sqrt{2 a_{k}} \geq 2$. Therefore, by the mathematical induction, we have $a_{n} \geq 2$ for all n.

Since $a_{n} \geq 2$ implies $a_{n+1}=\sqrt{2 a_{n}} \leq a_{n}, a_{n}$ is decreasing and bounded below. Hence, by the completeness property, a_{n} converges.

Suppose $0<a_{0}<2$. Then, $a_{1}=\sqrt{2 a_{0}}<2$. Next, we assume $a_{k}<2$ for some k. Then, $a_{k+1}=\sqrt{2 a_{k}}<2$. Therefore, by the mathematical induction, we have $a_{n}<2$ for all n.

Since $a_{n}<2$ implies $a_{n+1}=\sqrt{2 a_{n}}>a_{n}, a_{n}$ is increasing and bounded above. Hence, by the completeness property, a_{n} converges.

Proof for (b). Let L be the $\operatorname{limit} \lim a_{n}=L$. Then, a_{n+1} also has the limit L. Thus, Theorem 5.1 implies

$$
L=\lim a_{n+1}=\lim 2 a_{n}^{2}=2 \lim a_{n}^{2}=2\left(\lim a_{n}\right)^{2}=2 L^{2} .
$$

Hence, $L=0$ or 2 . However, if $a_{0} \geq 2$ then $a_{n} \geq 2$ by the above proof of (a). So, the limit location theorem implies $L \geq 2$, namely $L \neq 0$. If $0<a_{0}<2$ then $a_{n} \geq a_{0}$ by the above proof of (a). So, the limit location theorem implies $L \geq a_{0}>0$, namely $L \neq 0$. In conclusion, $L \neq 0$ and thus $L=2$.

Comments : Even if $a_{n}>0$, the limit can be zero as like $a_{n}=\frac{1}{n}$. Thus, one show use $a_{n}>a_{0}$ and $a_{0}>0$.

Problem 5. Exercise 6.3.1. Page 90.
Proof. In (a) and (c), we have $0 \leq b_{n} \leq 1$. Hence, the BW theorem guarantees that there exists a convergent subsequence.

Regarding (b), if $a_{n}=-1+\frac{1}{n}$ then $b_{n}=-n+1$ which is divergent.

Problem 6. Exercise 6.4.1. Page 90.
Proof. Let $\lim a_{n}=L$. Then, given $\epsilon>0$ we have $\left|a_{n}-L\right|<\frac{\epsilon}{2}$ for $n \geq N$ where N is a large integer. Therefore,

$$
\left|a_{n}-a_{m}\right|=\left|\left(a_{n}-L\right)+\left(L-a_{m}\right)\right| \leq\left|a_{n}-L\right|+\left|L-a_{m}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

for $n, m \geq N$. Namely, a_{n} is a Cauchy sequence.

Comments : $\left|a_{n}-a_{m}\right|<\epsilon$ should hold for any $n, m \geq N$, namely n and m are independent. Some student only showed $\left|a_{n}-a_{n+1}\right|<\epsilon$ and it is not enough to be a Cauchy sequence.

Problem 7. Exercise 6.5.1. (b), (d) Page 90.
Proof for (b). If $n=2 m$ then $a_{2 m}=\frac{1}{2 m}$. Hence, $0<a_{2 m} \leq \frac{1}{2}$ and $a_{2}=\frac{1}{2}$.
If $n=2 m-1$ then $a_{2 m-1}=\frac{-1}{2 m-1}$. Hence, $-1 \leq a_{2 m-1}<0$ and $a_{1}=-1$.
Therefore, $\frac{1}{2}$ is the maximum and -1 is the minimum. Property 6.5 A and 6.5B show that $\frac{1}{2}$ is the supremum and -1 is the infimum.

Proof for (d). We have

$$
a_{n}-a_{n+1}=\frac{n}{2^{n}}-\frac{n+1}{2^{n+1}}=\frac{2 n-(n+1)}{2^{n+1}}=\frac{n-1}{2^{n+1}} \geq 0
$$

Hence, a_{n} is decreasing, namely $a_{n} \leq a_{1}=\frac{1}{2}$. Therefore, $\frac{1}{2}$ is the maximum. Property 6.5 A shows that $\frac{1}{2}$ is the supremum.

We have $a_{n}>0$ and

$$
\frac{a_{n+1}}{a_{n}}=\frac{n+1}{2 n}=\frac{1}{2}+\frac{1}{2 n} .
$$

Thus, Theorem 5.1 shows $\lim a_{n+1} / a_{n}=1 / 2<1$. Hence, the above proof for the problem 3-(b) shows $\lim a_{n}=0$.
$0<a_{n}$ implies that 0 is a lower bounds. Assume that there exists a lower bound $b>0$. However, $\lim a_{n}=0$ implies $a_{n} \leq b / 2<b$ for $n \gg 1$. Thus, there is no lower bound greater than 0 . Hence, 0 is the infimum.

Assume that the minimum exists. Then, it is 0 by Property 6.5B. However, $a_{n} \neq 0$. Hence, the minimum does not exists.

Problem 8. Exercise 6.5.4. Page 90.
We provide two different proofs.

Proof 1. By the completeness property $\sup S$ and $\inf T$ exists.
Given $t \in T, s \leq t$ holds for all $s \in S$. Hence, every t is an upper bound for S. Since $\sup S$ is the least upper bound, we have $\sup S \leq t$ for all $t \in T$. Hence, $\sup S$ is a lower bound for T. Since $\inf T$ is the greatest lower bound, we have $\sup S \leq \inf T$.
Proof 2. By the completeness property $\sup S$ and $\inf T$ exists.
Suppose $\sup S>\inf T$. Then, the number $m=(\sup S+\inf T) / 2$ satisfies $\sup S>m>\inf T$. Then, there exists an element $s_{0} \in S$ such that $s_{0}>m$. If not, $s \leq m$ holds for all $s \in S$, namely m is an upper bound. But it is impossible since the least upper bound sup S is greater than m. In the same manner there exists an element $t_{0} \in T$ such that $t_{0}<m$. Then, we have $s_{0}>m>t_{0}$ which contradicts to the condition $s<t$.

Problem 9. Problem 6-2 Page 91.
Proof for (a). For each natural number n, there exists an element $a_{n} \in S$ such that

$$
\begin{equation*}
\bar{m}-\frac{1}{n}<a_{n} \leq \bar{m} . \tag{2}
\end{equation*}
$$

(Remark that $a_{n}=a_{m}$ is possible for $n \neq m$.) If not, $s \leq \bar{m}-\frac{1}{n}$ holds for all $s \in S$, namely $\bar{m}-\frac{1}{n}$ is an upper bound. But it is impossible since the least upper bound $\sup S=\bar{m}$ is greater than $\bar{m}-\frac{1}{n}$.

Then, given $\epsilon>0$, for $n>1 / \epsilon$ we have

$$
\left|a_{n}-\bar{m}\right| \leq \frac{1}{m}<\epsilon,
$$

namely a_{n} converges to \bar{m}.

Comments :

(1) For the cases $S=\{1\}$ or $S=[0,1] \cup\{2\}$, one should include the equality for the right inequality in 2 .
(2) If S includes any interval with positive length, S has uncountably many elements. Namely, one can not give orders for the all elements in S.

Proof for (b). By the completeness property $\sup A, \sup B$, and $\sup A+B$ exists.

Given $a \in A$ and $b \in B$, we have $a+b \leq \sup A+\sup B$, namely $\sup A+$ $\sup B$ is an upper bound for $A+B$. Therefore, we have

$$
\begin{equation*}
\sup A+B \leq \sup A+\sup B . \tag{3}
\end{equation*}
$$

On the other hand, for all $a \in A$ and $b \in B$ we have

$$
a+b \leq \sup A+B
$$

Hence, give $a \in A$ the following holds

$$
b \leq(\sup A+B)-a
$$

for all $b \in B$. Thus,

$$
\sup B \leq(\sup A+B)-a
$$

Hence,

$$
a \leq(\sup A+B)-\sup B
$$

hold for all $a \in A$. Therefore,

$$
\sup A \leq(\sup A+B)-\sup B
$$

namely $\sup A+\sup B \leq \sup A+B$. Thus, combining with 3 yields the desired result.

Problem 10. Problem 6-3 Page 91.
Proof for (a). Since f is decreasing, we have

$$
f(n+1) \leq \int_{n}^{n+1} f(x) d x \leq f(n)
$$

namely

$$
\begin{equation*}
0 \leq \int_{n}^{n+1} f(x) d x-f(n+1) \leq f(n)-f(n+1) \tag{4}
\end{equation*}
$$

Hence, for $m>n$ we have

$$
a_{m}-a_{n}=\sum_{n}^{m-1} f(k)-\int_{n}^{m} f(x) d x=\sum_{n}^{m-1} f(k)-\int_{k}^{k+1} f(x) d x
$$

Combining the above equality with 4 and $f \geq 0$ yields

$$
0 \leq a_{m}-a_{n} \leq \sum_{n}^{m-1} f(k)-f(k+1)=f(n)-f(m) \leq f(n)
$$

Given ϵ, there exists a large integer N such that $f(n)<\epsilon$ for $n \geq N$. Since $a_{m}-a_{n}=0$ for $m=n$, we have

$$
\left|a_{m}-a_{n}\right| \leq f(n)<\epsilon
$$

for $m, n \geq N$.

Proof for (b).

$$
a_{n}=1+\cdots+e^{n-1}-\int_{0}^{n} e^{-x} d x=\frac{1-e^{-n}}{1-e^{-1}}+\left.e^{-x}\right|_{0} ^{n}=\frac{1-e^{-n}}{1-e^{-1}}+e^{-n}-1
$$

We have $\lim e^{-n}=0$ by Theorem 3.4. So, Theorem 5.1 implies

$$
\lim a_{n}=\frac{1}{1-e^{-1}}-1=\frac{e^{-1}}{1-e^{-1}}=\frac{1}{e-1} .
$$

