18.100A PROBLEM SET 2 SOLUTIONS
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Problem 1. Let a,, = —(1+7+---+—) forn>2. Show lim a, = 1.
Inn 2 n n—00
Proof. Since % is a decreasing function for = > 0, we have
nHl 1 1 "1
—dr<1l+-+---+—-<1+ —dzx.
1 T 2 n 1

In addition, direct computations yield

n+1 1 n 1
/ —dr =In(n+1) > Inn, l—l—/ —dr=1+Inn.
1 €T 1z
Therefore,
Inn Inn Inn
Given € > 0, for n > e!/¢ the following holds
an—1] < — < 1 =
n SIn = me/e  ©
Therefore, 1 is the limit. O

Comments : The limit multiplication theorem is not available for b, =
14-- -—l—% and ¢, = ﬁ, because b,, does not have a limit and tends to +oo.

Problem 2. Let a, > 0 and lim a, = L. Prove that lim +/a, = VL.
n—00 n—00
Proof. In the case L = 0, given € > 0 we have |a,| < € for n > 1. Therefore,
|\/an| < e for n > 1, namely lim \/a,, = 0.
We now assume L > 0. Then,
an — L n— L]
(1) Van - VI <| .
" Vv an + \/E \/Z

Since lima, = L, given € > 0 we have |a, — L| < v/Le for n > 1. Thus,

|\/an — VL| < € for n > 1, namely lim \/a, = VL.

la
\g

O

Comments :
(1) In the case L = 0, the last term in the inequality (1) is not defined.
(2) There is no theorem in the textbook which guarantees the conver-

gence of /a, . Hence, one can not assume that ,/a,, converges to a
certain limit M.
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Problem 3. Problem 5-2 page 75. (It is enough to give one proof of (b),
while the textbook asks to find two proofs.)

Proof for (a). Since 1 — L > 0, we have GZ—:l <L+ (1—-L)=1forn>1,
namely an4+1 < a, for n > 1. O
Comments : If L =1 then L — 1 =0 and thus the above argument fails.
For example, a, =1 — % is increasing. However, lim GZ—:I =1.

Proof for (b). Since % > 0, we have CLZ—:l <L+ % = % for n > N
where N is a large natural number. Let M denote % Then,

an+1 < Map.
We assume ay i < MPF*ap for a natural number k. Then,

AN+k+1 k k+1
AN k1 = anyk <M -M%ay = M"" ay.
ANtk

By the mathematical induction, we have a,, < M Ngy for n > N.
Theorem 3.4 shows lim M™ = 0. Therefore, Theorem 5.1.1 implies lim M" Nay =

0. Since 0 < ay, the squeeze theorem yields lim a,, = 0.
O

Problem 4. Problem 5-7 page 75. (Hint: consider the two cases (1) ay > 2,
and (2) 0 < ap < 2.)

Proof for (a). Suppose ag > 2. Then, a; = /2a¢p > 2. Next, we assume
ap, > 2 for some k. Then, a1 = v/2a; > 2. Therefore, by the mathematical
induction, we have a,, > 2 for all n.

Since a, > 2 implies an11 = v2a, < an, a, is decreasing and bounded
below. Hence, by the completeness property, a, converges.

Suppose 0 < ag < 2. Then, a; = /2a¢9 < 2. Next, we assume a; < 2
for some k. Then, agy1 = v/2ap < 2. Therefore, by the mathematical
induction, we have a, < 2 for all n.

Since a,, < 2 implies a,+1 = v/2a, > an, a, is increasing and bounded
above. Hence, by the completeness property, a,, converges. O

Proof for (b). Let L be the limit lima,, = L. Then, a,,4+1 also has the limit
L. Thus, Theorem 5.1 implies

L =lima,sq, = lim 2ai = 2lim ai = 2(lim an)2 =2I°.

Hence, L = 0 or 2. However, if ay > 2 then a,, > 2 by the above proof
of (a). So, the limit location theorem implies L > 2, namely L # 0. If
0 < ap < 2 then a, > ag by the above proof of (a). So, the limit location
theorem implies L > ag > 0, namely L # 0. In conclusion, L # 0 and thus
L=2. O

Comments : Even if a,, > 0, the limit can be zero as like a,, = +. Thus,

n
one show use a, > ag and ag > 0.



Problem 5. Ezercise 6.3.1. Page 90.

Proof. In (a) and (c), we have 0 < b, < 1. Hence, the BW theorem guaran-
tees that there exists a convergent subsequence.
Regarding (b), if a,, = —1 + % then b, = —n + 1 which is divergent.
O

Problem 6. Ezercise 6.4.1. Page 90.

Proof. Let lima, = L. Then, given ¢ > 0 we have |a, — L| < § forn > N
where N is a large integer. Therefore,

€ €
]an—am]:](an—L)+(L—am)]§]an—L\+]L—am\<§+§:6,

for n,m > N. Namely, a, is a Cauchy sequence. O

Comments : |a, — a;,| < € should hold for any n,m > N, namely n and
m are independent. Some student only showed |a,, — a,+1] < € and it is not
enough to be a Cauchy sequence.

Problem 7. Ezercise 6.5.1. (b), (d) Page 90.

Proof for (b). If n = 2m then ag,, = ﬁ Hence, 0 < agy, < % and ag = %
If n =2m —1 then asy—1 = 277:%1 Hence, —1 < a9;,—1 < 0 and a; = —1.
Therefore, % is the maximum and —1 is the minimum. Property 6.5A and

6.5B show that % is the supremum and —1 is the infimum. O

Proof for (d). We have

n n+172n—(n+1)7n—1>
27_ on+1 - on+1 - on+1 > 0.

anp — Apt1 =

Hence, a,, is decreasing, namely a,, < a1 = % Therefore, % is the maximum.
Property 6.5A shows that % is the supremum.

We have a,, > 0 and
an+1_n+1_1 1

Gn 2n 2 + i
Thus, Theorem 5.1 shows limay,11/a, = 1/2 < 1. Hence, the above proof
for the problem 3-(b) shows lim a,, = 0.

0 < a,, implies that 0 is a lower bounds. Assume that there exists a lower
bound b > 0. However, lima, = 0 implies a, < b/2 < b for n > 1. Thus,
there is no lower bound greater than 0. Hence, 0 is the infimum.

Assume that the minimum exists. Then, it is 0 by Property 6.5B. How-
ever, a, # 0. Hence, the minimum does not exists.

O

Problem 8. FEzxercise 6.5.4. Page 90.

We provide two different proofs.
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Proof 1. By the completeness property sup S and inf T exists.

Given t € T', s <t holds for all s € S. Hence, every t is an upper bound
for S. Since sup S is the least upper bound, we have supS <t forallt € T.
Hence, sup S is a lower bound for T'. Since inf T is the greatest lower bound,
we have sup .S <infT. U

Proof 2. By the completeness property sup S and inf T exists.

Suppose sup S > inf T'. Then, the number m = (sup S + inf T") /2 satisfies
sup S > m > inf T'. Then, there exists an element sg € S such that sg > m.
If not, s < m holds for all s € S, namely m is an upper bound. But it is
impossible since the least upper bound sup S is greater than m. In the same
manner there exists an element ty € T such that tg < m. Then, we have
sp > m > tg which contradicts to the condition s < t. O

Problem 9. Problem 6-2 Page 91.

Proof for (a). For each natural number n, there exists an element a, € S
such that

(2) m—— < ap, <m.

S

(Remark that a, = a, is possible for n # m.) If not, s < m — < holds for
all s € S, namely m — % is an upper bound. But it is impossible since the
e — 1

least upper bound sup S = m is greater than m — .
Then, given € > 0, for n > 1/¢ we have
i 1
lan, —m| < — <,
m
namely a,, converges to m. O

Comments :
(1) For the cases S = {1} or S = [0,1] U {2}, one should include the
equality for the right inequality in 2.
(2) If S includes any interval with positive length, S has uncountably
many elements. Namely, one can not give orders for the all elements

in S.

Proof for (b). By the completeness property sup A, sup B, and sup A + B
exists.

Given a € A and b € B, we have a + b < sup A 4 sup B, namely sup A +
sup B is an upper bound for A + B. Therefore, we have

(3) supA+ B <supA+supB.

On the other hand, for all a € A and b € B we have
a+b<supA+ B.



Hence, give a € A the following holds
b<(supA+ B)—a,

for all b € B. Thus,

sup B < (sup A + B) —a.
Hence,

a < (sup A+ B) —sup B,
hold for all @ € A. Therefore,

sup A < (supA + B) —sup B,

namely sup A + sup B < sup A + B. Thus, combining with 3 yields the
desired result. O

Problem 10. Problem 6-3 Page 91.

Proof for (a). Since f is decreasing, we have

n+1

fin+1) < / f(@)de < f(n),

n

namely

n+1
(4) 0< / f@)dz — f(n+1) < f(n) — f(n+1).

Hence, for m > n we have

m—1

m—1 m k+1
e —an= 3 0= [ f@e =3 w0~ [ ra)dn

Combining the above equality with 4 and f > 0 yields

m—1

Given ¢, there exists a large integer N such that f(n) < e for n > N. Since
Qm — @y, = 0 for m = n, we have
lam —an| < f(n) <e,

for m,n > N. O
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Proof for (b).

an:1+-~~—|—e”_1—/n6_xda::1_e_n—i—e_mn:1_6_n—|—6_"—1.
0 1—e! 0 1—el
We have lime™ = 0 by Theorem 3.4. So, Theorem 5.1 implies
liman:;— = e’ = 1 .
1—et 1—e1l e—-1



