
18.100A PROBLEM SET 2 SOLUTIONS

Problem 1. Let an =
1

lnn

(
1 +

1

2
+ · · ·+ 1

n

)
for n ≥ 2. Show lim

n→∞
an = 1.

Proof. Since 1
x is a decreasing function for x > 0, we have∫ n+1

1

1

x
dx ≤ 1 +

1

2
+ · · ·+ 1

n
≤ 1 +

∫ n

1

1

x
dx.

In addition, direct computations yield∫ n+1

1

1

x
dx = ln(n+ 1) ≥ lnn, 1 +

∫ n

1

1

x
dx = 1 + lnn.

Therefore,

1 =
lnn

lnn
≤ an ≤

1 + lnn

lnn
= 1 +

1

lnn
.

Given ε > 0, for n > e1/ε the following holds

|an − 1| ≤ 1

lnn
≤ 1

ln e1/ε
= ε.

Therefore, 1 is the limit. �

Comments : The limit multiplication theorem is not available for bn =
1+ · · ·+ 1

n and cn = 1
lnn , because bn does not have a limit and tends to +∞.

Problem 2. Let an ≥ 0 and lim
n→∞

an = L. Prove that lim
n→∞

√
an =

√
L.

Proof. In the case L = 0, given ε > 0 we have |an| ≤ ε2 for n� 1. Therefore,
|√an| ≤ ε for n� 1, namely lim

√
an = 0.

We now assume L > 0. Then,

|
√
an −

√
L| ≤

∣∣∣ an − L
√
an +

√
L

∣∣∣ ≤ |an − L|√
L

.(1)

Since lim an = L, given ε > 0 we have |an − L| ≤
√
Lε for n � 1. Thus,

|√an −
√
L| ≤ ε for n� 1, namely lim

√
an =

√
L.

�

Comments :

(1) In the case L = 0, the last term in the inequality (1) is not defined.
(2) There is no theorem in the textbook which guarantees the conver-

gence of
√
an . Hence, one can not assume that

√
an converges to a

certain limit M .
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Problem 3. Problem 5-2 page 75. (It is enough to give one proof of (b),
while the textbook asks to find two proofs.)

Proof for (a). Since 1− L > 0, we have an+1

an
≤ L+ (1− L) = 1 for n� 1,

namely an+1 ≤ an for n� 1. �

Comments : If L = 1 then L− 1 = 0 and thus the above argument fails.
For example, an = 1− 1

n is increasing. However, lim an+1

an
= 1.

Proof for (b). Since 1−L
2 > 0, we have an+1

an
≤ L + 1−L

2 = 1+L
2 for n ≥ N

where N is a large natural number. Let M denote 1+L
2 . Then,

aN+1 ≤MaN .

We assume aN+k ≤MkaN for a natural number k. Then,

aN+k+1 =
aN+k+1

aN+k
aN+k ≤M ·MkaN = Mk+1aN .

By the mathematical induction, we have an ≤Mn−NaN for n ≥ N .
Theorem 3.4 shows limMn = 0. Therefore, Theorem 5.1.1 implies limMn−NaN =

0. Since 0 < an, the squeeze theorem yields lim an = 0.
�

Problem 4. Problem 5-7 page 75. (Hint: consider the two cases (1) a0 ≥ 2,
and (2) 0 < a0 < 2.)

Proof for (a). Suppose a0 ≥ 2. Then, a1 =
√

2a0 ≥ 2. Next, we assume
ak ≥ 2 for some k. Then, ak+1 =

√
2ak ≥ 2. Therefore, by the mathematical

induction, we have an ≥ 2 for all n.
Since an ≥ 2 implies an+1 =

√
2an ≤ an, an is decreasing and bounded

below. Hence, by the completeness property, an converges.

Suppose 0 < a0 < 2. Then, a1 =
√

2a0 < 2. Next, we assume ak < 2
for some k. Then, ak+1 =

√
2ak < 2. Therefore, by the mathematical

induction, we have an < 2 for all n.
Since an < 2 implies an+1 =

√
2an > an, an is increasing and bounded

above. Hence, by the completeness property, an converges. �

Proof for (b). Let L be the limit lim an = L. Then, an+1 also has the limit
L. Thus, Theorem 5.1 implies

L = lim an+1 = lim 2a2n = 2 lim a2n = 2(lim an)2 = 2L2.

Hence, L = 0 or 2. However, if a0 ≥ 2 then an ≥ 2 by the above proof
of (a). So, the limit location theorem implies L ≥ 2, namely L 6= 0. If
0 < a0 < 2 then an ≥ a0 by the above proof of (a). So, the limit location
theorem implies L ≥ a0 > 0, namely L 6= 0. In conclusion, L 6= 0 and thus
L = 2. �

Comments : Even if an > 0, the limit can be zero as like an = 1
n . Thus,

one show use an > a0 and a0 > 0.
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Problem 5. Exercise 6.3.1. Page 90.

Proof. In (a) and (c), we have 0 ≤ bn ≤ 1. Hence, the BW theorem guaran-
tees that there exists a convergent subsequence.

Regarding (b), if an = −1 + 1
n then bn = −n+ 1 which is divergent.

�

Problem 6. Exercise 6.4.1. Page 90.

Proof. Let lim an = L. Then, given ε > 0 we have |an − L| < ε
2 for n ≥ N

where N is a large integer. Therefore,

|an − am| = |(an − L) + (L− am)| ≤ |an − L|+ |L− am| <
ε

2
+
ε

2
= ε,

for n,m ≥ N . Namely, an is a Cauchy sequence. �

Comments : |an − am| < ε should hold for any n,m ≥ N , namely n and
m are independent. Some student only showed |an− an+1| < ε and it is not
enough to be a Cauchy sequence.

Problem 7. Exercise 6.5.1. (b), (d) Page 90.

Proof for (b). If n = 2m then a2m = 1
2m . Hence, 0 < a2m ≤ 1

2 and a2 = 1
2 .

If n = 2m− 1 then a2m−1 = −1
2m−1 . Hence, −1 ≤ a2m−1 < 0 and a1 = −1.

Therefore, 1
2 is the maximum and −1 is the minimum. Property 6.5A and

6.5B show that 1
2 is the supremum and −1 is the infimum. �

Proof for (d). We have

an − an+1 =
n

2n
− n+ 1

2n+1
=

2n− (n+ 1)

2n+1
=
n− 1

2n+1
≥ 0.

Hence, an is decreasing, namely an ≤ a1 = 1
2 . Therefore, 1

2 is the maximum.

Property 6.5A shows that 1
2 is the supremum.

We have an > 0 and

an+1

an
=
n+ 1

2n
=

1

2
+

1

2n
.

Thus, Theorem 5.1 shows lim an+1/an = 1/2 < 1. Hence, the above proof
for the problem 3-(b) shows lim an = 0.

0 < an implies that 0 is a lower bounds. Assume that there exists a lower
bound b > 0. However, lim an = 0 implies an ≤ b/2 < b for n � 1. Thus,
there is no lower bound greater than 0. Hence, 0 is the infimum.

Assume that the minimum exists. Then, it is 0 by Property 6.5B. How-
ever, an 6= 0. Hence, the minimum does not exists.

�

Problem 8. Exercise 6.5.4. Page 90.

We provide two different proofs.



4

Proof 1. By the completeness property supS and inf T exists.
Given t ∈ T , s ≤ t holds for all s ∈ S. Hence, every t is an upper bound

for S. Since supS is the least upper bound, we have supS ≤ t for all t ∈ T .
Hence, supS is a lower bound for T . Since inf T is the greatest lower bound,
we have supS ≤ inf T . �

Proof 2. By the completeness property supS and inf T exists.
Suppose supS > inf T . Then, the number m = (supS+ inf T )/2 satisfies

supS > m > inf T . Then, there exists an element s0 ∈ S such that s0 > m.
If not, s ≤ m holds for all s ∈ S, namely m is an upper bound. But it is
impossible since the least upper bound supS is greater than m. In the same
manner there exists an element t0 ∈ T such that t0 < m. Then, we have
s0 > m > t0 which contradicts to the condition s < t. �

Problem 9. Problem 6-2 Page 91.

Proof for (a). For each natural number n, there exists an element an ∈ S
such that

m̄− 1

n
< an ≤ m̄.(2)

(Remark that an = am is possible for n 6= m.) If not, s ≤ m̄ − 1
n holds for

all s ∈ S, namely m̄ − 1
n is an upper bound. But it is impossible since the

least upper bound supS = m̄ is greater than m̄− 1
n .

Then, given ε > 0, for n > 1/ε we have

|an − m̄| ≤
1

m
< ε,

namely an converges to m̄. �

Comments :

(1) For the cases S = {1} or S = [0, 1] ∪ {2}, one should include the
equality for the right inequality in 2.

(2) If S includes any interval with positive length, S has uncountably
many elements. Namely, one can not give orders for the all elements
in S.

Proof for (b). By the completeness property supA, supB, and supA + B
exists.

Given a ∈ A and b ∈ B, we have a+ b ≤ supA+ supB, namely supA+
supB is an upper bound for A+B. Therefore, we have

supA+B ≤ supA+ supB.(3)

On the other hand, for all a ∈ A and b ∈ B we have

a+ b ≤ supA+B.



5

Hence, give a ∈ A the following holds

b ≤ (supA+B)− a,

for all b ∈ B. Thus,

supB ≤ (supA+B)− a.

Hence,

a ≤ (supA+B)− supB,

hold for all a ∈ A. Therefore,

supA ≤ (supA+B)− supB,

namely supA + supB ≤ supA + B. Thus, combining with 3 yields the
desired result. �

Problem 10. Problem 6-3 Page 91.

Proof for (a). Since f is decreasing, we have

f(n+ 1) ≤
∫ n+1

n
f(x)dx ≤ f(n),

namely

0 ≤
∫ n+1

n
f(x)dx− f(n+ 1) ≤ f(n)− f(n+ 1).(4)

Hence, for m > n we have

am − an =
m−1∑
n

f(k)−
∫ m

n
f(x)dx =

m−1∑
n

f(k)−
∫ k+1

k
f(x)dx.

Combining the above equality with 4 and f ≥ 0 yields

0 ≤ am − an ≤
m−1∑
n

f(k)− f(k + 1) = f(n)− f(m) ≤ f(n).

Given ε, there exists a large integer N such that f(n) < ε for n ≥ N . Since
am − an = 0 for m = n, we have

|am − an| ≤ f(n) < ε,

for m,n ≥ N . �
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Proof for (b).

an = 1 + · · ·+ en−1 −
∫ n

0
e−xdx =

1− e−n

1− e−1
+ e−x

∣∣∣n
0

=
1− e−n

1− e−1
+ e−n − 1.

We have lim e−n = 0 by Theorem 3.4. So, Theorem 5.1 implies

lim an =
1

1− e−1
− 1 =

e−1

1− e−1
=

1

e− 1
.

�


